skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Filstrup, Christopher_T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Aquatic scientists require robust, accurate information about nutrient concentrations and indicators of algal biomass in unsampled lakes in order to understand and predict the effects of global climate and land‐use change. Historically, lake and landscape characteristics have been used as predictor variables in regression models to generate nutrient predictions, but often with significant uncertainty. An alternative approach to improve predictions is to leverage the observed relationship between water clarity and nutrients, which is possible because water clarity is more commonly measured than lake nutrients. We used a joint‐nutrient model that conditioned predictions of total phosphorus, nitrogen, and chlorophyll aon observed water clarity. Our results demonstrated substantial reductions (8–27%; median = 23%) in prediction error when conditioning on water clarity. These models will provide new opportunities for predicting nutrient concentrations of unsampled lakes across broad spatial scales with reduced uncertainty. 
    more » « less